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In order to study analytically the nature of the jamming transition in granular material, we have considered
a cavity method mean-field theory, in the framework of a statistical mechanics approach, based on Edwards’
original idea. For simplicity, we have applied the theory to a lattice model, and a transition with exactly the
same nature of the glass transition in mean-field models for usual glass formers is found. The model is also
simulated in three dimensions under tap dynamics, and a jamming transition with glassy features is observed.
In particular, two-step decays appear in the relaxation functions and dynamic heterogeneities resembling ones
usually observed in glassy systems. These results confirm early speculations about the connection between the
jamming transition in granular media and the glass transition in usual glass formers, giving moreover a precise
interpretation of its nature.
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I. INTRODUCTION

A deep connection between glass transition in molecular
glass formers, structural arrest in colloidal systems, and jam-
ming transition in granular media �1–6� has often been
stressed in the past few years. In spite of the fact that these
systems are very different from one another, varying suitably
the control parameters, a slowdown and a subsequent struc-
tural arrest in a solidlike disordered state are found in each of
them. In �2,6�, a possible phase diagram for jamming is sug-
gested, which takes into account the fact that jamming is
obtained either raising the volume fraction or lowering the
temperature or lowering the applied stress. Colloidal suspen-
sions and molecular glass formers are both thermal systems,
and it is commonly accepted that both colloidal glass transi-
tion and molecular glass transition are of the same type de-
spite the fact that different control parameters may drive the
transition. The case of granular materials is instead very dif-
ferent: They are athermal systems, since the thermal fluctua-
tions are significantly less than the gravitational energy and
the system cannot explore the phase space without any ex-
ternal driving. Nevertheless, an exceeding slowing down is
observed when a granular material is shaken at low shaking
amplitude, or flows under a low shear stress, with strong
analogies with the slowing down observed in glass formers.
Experimental and numerical studies �4–7� have confirmed
this connection, however its precise nature is still unclear
�3,6�.

In the present paper, in order to study this connection we
apply a statistical mechanics approach to granular media.
This approach, which has been extensively developed in pre-
vious works �8,9�, is based on an elaboration of the original
ideas suggested by Edwards �10�. The basic assumption is
that for a granular system subject to an external drive �e.g.,
tapping�, after having reached stationarity, time averages co-
incide with suitable ensemble averages over the “mechani-
cally stable” states. We have shown �9� that this assumption
works for different lattice models, namely that a generalized
Gibbs distribution of the stable states describes with good
approximation the stationary state attained by the system un-

der tapping dynamics. Here each tap consists in raising the
bath temperature to a finite value �called tap amplitude� and,
after a lapse of time �called tap duration�, quenching the bath
temperature back to zero. By cyclically repeating the pro-
cess, the system explores the space of the mechanically
stable states.

We thus consider one of the above lattice models for
which the statistical mechanics approach works. The model
is made up of hard spheres under gravity. Then we apply
standard statistical mechanics methods in order to investigate
analytically the existence and the nature of a possible jam-
ming transition. More precisely, we consider the Bethe-
Peierls approximation using the cavity method �11,12�: By
changing the control parameter, a phase transition from a
fluid to a crystal is found, and, when crystallization is
avoided, a glassy phase appears. The nature of this glassy
phase is analogous to that found in mean-field models for
glass formers �12–14�: In particular, we observe a dynamical
transition, where an exponentially high number of metastable
states appears, and at a lower temperature a thermodynamic
discontinuous phase transition to a glassy state. A brief ac-
count of these calculations was given in a previous Letter
�15�. We also studied �15� the model in 3D by means of
numerical simulations, and we found that the model under
taps has a transition from a fluid to a crystal, in very good
agreement with the mean-field approximation. However, the
numerical simulation was not suitable to study the glass tran-
sition since the model showed a strong tendency towards
crystallization.

For this reason, we study here a variant of the model �13�
which has the virtue of avoiding crystallization. We find that
the system under gravity evolved by Monte Carlo taps pre-
sents features characteristic of real granular media �16,17�,
and at low tap amplitudes a strong slowing down in the
dynamics with properties recalling those of usual glass form-
ers. In particular, we observe a dynamical nonlinear suscep-
tibility with a maximum at increasing time: This behavior,
typical of glass formers, is usually interpreted as the sign of
dynamic heterogeneities in the system.
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In conclusion, the results confirm early speculations about
the deep connection between the jamming transition in
granular media and the glass transition in usual glass form-
ers, giving moreover a precise interpretation to its nature.

In Sec. II, the mean-field phase diagram is discussed. The
details of calculations are presented in Appendixes A and B.
In particular, in Appendix B the self-consistency equations
obtained using the cavity method are shown. In Sec. III, the
3D model is presented and the numerical results are shown.

II. MEAN-FIELD SOLUTION IN THE BETHE-PEIERLS
APPROXIMATION

The model is a monodisperse hard-sphere system �with
diameter �2a0� under gravity. The Hamiltonian is given by

H = HHC + mg�
i

nizi, �1�

where zi is the height of site i, g is the gravity acceleration, m
is the grain mass, ni� �0,1� is the occupancy variable �ab-
sence or presence of a grain on site i�, and HHC��ni�� is the
hard-core term preventing two nearest-neighbor sites from
being simultaneously occupied.

We have shown in previous papers �9� that the model, Eq.
�1�, under taps can be described with good approximation by
a generalized Gibbs distribution of the “mechanically stable”
states �i.e., the states where the system is found at rest�. In
particular, we have studied the model, Eq. �1�, on a cubic
lattice of spacing a0. In our Monte Carlo simulations, a se-
quence of taps is applied to the system: Each tap consists in
raising the bath temperature, Tbath, to a finite value, and after
a given time, quenching Tbath back to zero. We wait for the
system to stop, and the measures are done in these mechani-
cally stable states. We have found that the weight of a given
state, �ni�, is given with good approximation by

e−�H��ni�����ni�� , �2�

where KBTconf =�−1 is a thermodynamic parameter, called
“configurational temperature,” characterizing the distribu-
tion. The operator ���ni�� selects mechanically stable states:
���ni��=1 if �ni� is “stable” and ���ni��=0 otherwise. The
system partition function is thus the following �9�:

Z = �
�ni�

e−�H��ni�����ni�� , �3�

where the sum runs over all microstates, �ni�.
In the present section, we show the phase diagram of the

model, Eq. �1�, obtained using a mean-field theory in the
Bethe-Peierls approximation �see �11,12� and references
therein�, based on a random graph �plotted in Fig. 1� which
takes into account that the gravity breaks up the symmetry
along the z axis. This lattice is made up of H horizontal
layers �i.e., z� �1, . . . ,H��. Each layer is a random graph of
connectivity, k−1=3. Each site in layer z is also connected to
its homologous site in z−1 and z+1 �the total connectivity is
thus k+1�. Locally, the graph has a treelike structure but
there are loops whose length is of order ln N, insuring geo-
metric frustration. In the thermodynamic limit, only very

long loops are present. We adopt a simple de-
finition of “mechanical stability:” a grain is “stable” if it has
a grain underneath. For a given grain configuration
�ni�, the operator ���ni�� has a simple expression:
���ni��=limK→� exp�−KHEdw�, where HEdw

=�i�ni�z�,1�ni�z−1�,0�ni�z−2�,0 �for clarity, we have shown the z
dependence in ni�z��. The details of the calculations are given
in Appendixes A and B �see also Refs. �15,18�, where this
mean-field theory was first introduced�.

We solve the recurrence equations found in the Bethe-
Peierls approximation in three cases: �1� A fluidlike homoge-
neous phase; �2� a crystallinelike phase characterized by the
breakdown of the horizontal translational invariance; and �3�
a glassy phase described by a one-step replica symmetry
breaking �1RSB�. The details of the calculations are shown
in the Appendixes.

The control parameters are the configurational tempera-
ture, Tconf, and the number of grains per unit surface, Ns
=�z��z�, ��z� being the density profile. In Fig. 2, the bulk
density at equilibrium, �	Ns / �2
z�−1� �19� �where 
z� is
the average height�, is plotted as a function of the configu-

FIG. 1. �Color online� In the mean-field approximation, the
grains are located on a Bethe lattice, sketched in the figure, where
each horizontal layer is a random graph of connectivity k−1=3.
Homologous sites on neighboring layers are also linked and the
overall connectivity, c	k+1=5 �z is in units of a0�.

FIG. 2. �Color online� The density, �	Ns / �2
z�−1�, for Ns

=0.6 as a function of Tconf �� is in units of a0
−3 and Tconf in units of

mga0 /KB�. �max is the maximum density reached by the system in
the crystal phase.
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rational temperature, Tconf, for a given value of Ns. We found
that at high Tconf, a homogeneous solution corresponding to
the fluidlike phase is found. By lowering Tconf at Tm, a phase
transition to a crystal phase �an antiferromagnetic solution
with a breakdown of the translation invariance� occurs. The
fluid phase still exists below Tm as a metastable phase corre-
sponding to a supercooled fluid when crystallization is
avoided. Finally, a 1RSB solution �found with the cavity
method �11��, characterized by the presence of a large num-
ber of local minima in the free energy �11,20�, appears at TD,
and becomes stable at a lower point TK, where a thermody-
namic transition from the supercooled fluid to a 1RSB glassy
phase takes place. The temperature TD, which is interpreted
in mean field as the location of a dynamical transition where
the relaxation time diverges, in real systems might instead
correspond to a crossover in the dynamics �see �12,14,21�
and references therein�. ��Tconf� has a shape very similar to
that observed in the “reversible regime” of tap experiments
�16,23�. The location of the glass transition, TK, corresponds
to a cusp in the function ��Tconf�. The dynamical crossover
point TD might correspond to the position of a characteristic
shaking amplitude �* found in experiments and simulations
where the “irreversible” and “reversible” regimes approxi-
mately meet.

In Fig. 3, the phase diagram obtained by varying Ns is
shown. The dashed vertical line in the figure corresponds to
the value of Ns chosen in Fig. 2.

The model, Eq. �1�, simulated in 3D by means of Monte
Carlo tap dynamics �15� presents a transition from a fluid to
a crystal as predicted by the mean-field approximation, den-
sity profiles in good agreement with the mean-field ones, and
in the fluid phase a large increase of the relaxation time as a
function of the inverse tap amplitude. In the following sec-
tion, we study a more complex model for hard spheres,
where an internal degree of freedom allows us to avoid crys-
tallization �13�.

III. HARD SPHERES WITH AN INTERNAL DEGREE
OF FREEDOM

The Hamiltonian of the model is

H = �

ij�

ninj	ij��i,� j� + mg�
i

nizi, �4�

where zi is the height of site i, g is the gravity acceleration, m
the grain mass, ni� �0,1� is the occupancy variable �absence

or presence of a grain on site i�, �i� �1, . . . ,q� represents the
internal degree of freedom �which we call spin�, and
	ij��i ,� j� is the interaction energy between spins. Different
values of the spin correspond to different positions of the
particle inside the cell. It is reasonable that a few number of
internal states might be enough to catch the main features of
real systems.

As in Ref. �13�, we study a simple realization of the
model described by Eq. �4�. Interpreting the spin as a posi-
tion of the particle in the cell, our choice can be easily visu-
alized in 2D, as shown in Fig. 4. We partition the space in
square cells, and subdivide each cell into four internal posi-
tions �namely q=4�. When a cell is occupied by a particle in
any given position, a hard-core repulsion excludes the pres-
ence of particles in some of the internal states of the neigh-
boring cells �namely, the interaction 	ij��i ,� j� is chosen
zero if the positions �i and � j are “compatible” and infinite
otherwise�. This choice can be interpreted as a coarse-
grained version of a hard-sphere system in the continuum. In
3D we subdivide the space into cubic cells of linear size a0,
and we consider six internal positions instead of four.

In the Monte Carlo simulations, N=433 grains are con-
fined in a 3D box of linear size L=12 �i.e., Ns=3�, between
hard walls in the vertical direction and with periodic bound-
ary conditions in the horizontal directions. We perform a
standard METROPOLIS algorithm on the system. The particles,
initially prepared in a random configuration, are subject to
taps, each one followed by a relaxation process. During a
tap, for a time 
0 �called tap duration�, the temperature is set
to the value T� �called tap amplitude�, so that particles have
a finite probability, pup, to move upwards �22�. During the
relaxation the temperature is set to zero, so that particles can
only reduce the energy, and therefore can move only down-
wards. The relaxation stops when the system has reached a
blocked state, where no grain can move downwards. Our
measurements are performed at this stage when the shake is

FIG. 3. �Color online� The system mean-field phase diagram is
plotted in the plane of its two control parameters �Tconf ,Ns� �Tconf is
in units of mga0 /KB and Ns in units of a0

−2�.

FIG. 4. The model in two dimensions: the space is partitioned in
square cells, and each cell can be occupied by at most one particle
in any one of the four shown positions �little circles�. A particle in
any given position �large shaded circle� excludes the presence of
particles in any of the black colored positions.
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off and the system is at rest. The time, t, is the number of
taps applied to the system.

In the following, the tap duration is fixed, 
0=10 MC
steps/particle and different tap amplitudes, T�, are consid-
ered. For each temperature, the quantities of interest are av-
eraged over 16–32 different realizations of the system, and
the errors are calculated as the fluctuations over this statisti-
cal ensemble. In the following, where the error bars are not
plotted, the errors are smaller than the symbol size. In Fig. 5,
the bulk density, �	N /L2�2
z�−1�, is plotted as a function
of T�: ��T�� has a shape resembling that found in the “re-
versible regime” of tap experiments �16,23�, and moreover
very similar to that obtained in the mean-field calculations
and shown in Fig. 2. At low shaking amplitudes �correspond-
ing to high bulk densities�, a strong growth of the equilibra-
tion time �i.e., the time necessary to reach stationarity� is
observed, and for the lowest values considered here �the
black stars in Fig. 5� the system remains out of stationarity.
In this region, the density profile, ��z�	1/L2�ini�z� �where
the sum �i is done over the sites i in the layer z=1, . . . ,L
�24��, is almost constant until a given layer and sharply de-
cays to zero �see Fig. 6�, as found in real granular media
�17�. In conclusion, the system studied here presents a jam-
ming transition at low tap amplitudes as found in real granu-
lar media.

In order to test the predictions of the mean-field calcula-
tions, in the following we measure quantities usually impor-
tant in the study of glass transition: the relaxation functions,
the relaxation time, and the dynamical susceptibility, con-
nected to the presence a dynamical correlation length.

In particular, we calculate the two-time autocorrelation
functions,

C�t,tw� =
1

N
�

i

ni�t�ni�tw��� i�t� · �� i�tw� , �5�

where �� i are unit length vectors, pointing in one of the six
coordinate directions, representing the position of the par-
ticles inside the cell; the average �¯� is done over 16–32
different realizations of the model obtained varying the ran-
dom number generator in the simulations, and the errors are
calculated as the fluctuations over this statistical ensemble.
For values of tw long enough, the system reaches a stationary
state, where the time translation invariance is recovered, i.e.,
C�t , tw�=C�t− tw�. In this time region, by averaging C�t� , tw�
over t� and tw such that t= t�− tw is fixed, we calculate the
“equilibrium” autocorrelation functions


q�t�� = 
C�t� − tw�� �6�

and the dynamical nonlinear susceptibility

��t� = 
q�t�2� − 
q�t��2. �7�

As shown in Fig. 7, at low values of the tap amplitudes, T�,
two-step decays appear, well fitted in the intermediate time
region, by the � correlator predicted by the mode coupling
theory for supercooled liquids �25,26� �the continuous curve
in Fig. 7�, and at long time by stretched exponentials �the
dashed curve in figure�. The relaxation time, 
, is defined as

q�
���0.1 �27�.

In Fig. 8, the relaxation time, 
, is plotted as a function of
the density, �. As found in many glass-forming liquids, 
���
is well fitted by a Vogel-Fulcher for the entire range, even if
we can identify a first region where 
��� is fitted with good
approximation by a power law. The power-law divergence
can be interpreted as a mean-field behavior, followed by a
hopping regime. Note that the model, Eq. �4�, studied in the
absence of gravity by means of the usual Monte Carlo
METROPOLIS �13�, exhibits a divergence of the relaxation
time as a power law, and no crossover to a hopping regime is
observed. We suggest that in the present case, the tap dynam-
ics favors the equilibration via hopping precesses.

FIG. 5. The bulk density, �	N /L2�2
z�−1�, is plotted as a
function of T� �T� is in units of mga0 /KB and � in units of a0

−3� for

0=10 MC steps/particle. The empty circles correspond to station-
ary states and the black stars to out of stationarity ones. �max is the
maximum density reached by the system in the crystal phase,
�max=6/7a0

−3.

FIG. 6. The density profile, ��z�, as function of the height, z, for
T�=0.20 mga0 /KB and 
0=10 MC steps/particle �z is in units of a0

and ��z� in units of a0
−3�.
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In Fig. 9, the relaxation time, 
, is plotted as a function of
the tap amplitude, T�: A crossover from a power law to a
different regime is again observed around a tap amplitude
TD, corresponding to the value of the density, ��TD�
�D,
where a similar crossover has been found in Fig. 8. However,
we cannot exclude that such a crossover is due to a finite-size
effect and only the power-law divergence survives in the
thermodynamic limit.

The divergence of the relaxation time at vanishing tap
amplitude is consistent with the experimental data of Phil-
ippe and Bideau �16� and D’Anna et al. �4�. Their findings
are in fact consistent with an Arrhenius behavior as a func-
tion of the experimental tap amplitude intensity. However, a
direct comparison with our data is not possible since we do
not know the relation between the experimental tap ampli-
tude and the tap amplitude in our simulations. A more direct
comparison would be possible if the experimental data were
plotted as a function of the bulk density, as we did in Fig. 8.

The dynamical nonlinear susceptibility, ��t�, plotted in
Fig. 10 at different T�, exhibits a maximum at a time, t*�T��,
proportional to the relaxation time, 
�T��. A similar behavior
was also found in a granular system in Ref. �28�. The pres-
ence of a maximum in the dynamical nonlinear susceptibility
is typical of glassy systems �29,30�. In particular the value of
the maximum, ��t*�, diverges in the p-spin model �29� as the
dynamical transition is approached from above, signaling the
presence of a diverging dynamical correlation length. In the
present case, the value of the maximum increases as T� de-
creases �except at very low T� where the maximum seems to
decrease �31��. The growth of ��t*� in our model suggests the
presence of a growing dynamical length also in granular me-
dia.

IV. CONCLUSIONS

In conclusion, using standard methods of statistical me-
chanics, we have investigated the jamming transition in a
model for granular media. We have shown a deep connection
between the jamming transition in granular media and the
glass transition in usual glass formers. As in usual glass

FIG. 7. The “equilibrium” autocorrelation function, 
q�t��, plot-
ted as function of t �t is in units of tap�, for tap amplitudes T�

=0.60 0.50, 0.425, 0.40, 0.385, 0.365, and 0.36 mga0 /KB �from
bottom to top�. The continuous line in figure is the � correlator of
the mode coupling theory with exponent parameters a=0.30
and b=0.52. The dashed line is a stretched exponential
�exp�−�t /
1��� with �=0.70.

FIG. 8. The relaxation time, 
, as function of the bulk density, �
�
 is in units of tap and � is in units of a0

−3�. The continuous line is
a Vogel-Fulcher, eA/��c−��, with �c=0.81±0.01 and A=0.49±0.10.
The dashed line is a power law, ��D−��−
1, with �D=0.76±0.01
and 
1=2.04±0.10.

FIG. 9. The relaxation time, 
, as a function of the tap amplitude
inverse, T�

−1 �
 is in units of tap and T� in units of mga0 /KB�. The
dashed line is a power law, �T�−TD�−
2, with TD=0.40±0.01 and

2=1.52±0.10. The continuous line is an Arrhenius fit, eA/T�, with
A=17.4±0.5 �the data in this region are also well fitted by both a
super-Arrhenius and Vogel-Fulcher laws�.
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formers, the mean-field calculations obtained using a statis-
tical mechanics approach to granular media predict a dy-
namical transition at a finite temperature, TD, and, at a lower
temperature, TK, a thermodynamics discontinuous phase
transition to a glass phase. In finite dimensions �1� the dy-
namical transition becomes only a dynamical crossover as
also found in usual glass formers �12,14,21� �here the relax-
ation time, 
, as a function of both the density and the tap
amplitude, presents a crossover from a power law to a dif-
ferent regime�; and �2� the thermodynamics transition tem-
perature, TK, seems to go to zero �the relaxation time, 
,
seems to diverge only at T�
0, even if a very low value of
the transition temperature is consistent with the data�.
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APPENDIX A: MEAN-FIELD SOLUTION

We consider the Hamiltonian, Eq. �1�, plus a chemical
potential term which controls the overall density. Hard-core
repulsion prevents two connected sites from being occupied
at the same time. We adopt a simple definition of “mechani-
cal stability”: a grain is “stable” if it has a grain underneath.
For a given grain configuration �ni�, the operator ���ni�� has
a simple expression: ���ni��=limK→� exp�−KHEdw�, where
HEdw=�i�ni�z�,1�ni�z−1�,0�ni�z−2�,0 �for clarity, we have shown
the z dependence in ni�z��.

The random graph, Fig. 1, keeps into account that the
gravity breaks up the symmetry along the z axis. This lattice
is made up of H horizontal layers �32� occupied by hard
spheres �two numbers identify a site of the lattice: the height

of the layer, z� �1, . . . ,H�, and the position in the layer, i�.
Each layer is a random graph of connectivity, k−1=3. Each
site in a layer at height z is also connected to its homologous
site in z−1 and z+1 �the total connectivity is thus k+1�. The
local treelike structure of the lattice allows us to write down
iterative equations in the manner of Bethe, where the parti-
tion function of each site is written in terms of the partition
functions of the neighbor sites. We have to introduce the
concept of “branch”: a branch is a graph where a root site, i,
has only k neighbors. In the present case, three kinds of
branches exist �see Fig. 11�: an “up” �“down”� branch where
the root site has k−1 neighbors on its same layer and one in
the upper �lower� layer, and a “side” branch where the root
has k−2 neighbors on its layer, one in the upper and one in
the lower layer.

Define Z0,s
�i,z� and Z1,s

�i,z�, the partition functions of a “side”
branch with root site i at height z restricted, respectively, to
configurations in which the site i is empty or filled by a

particle. Z1,u
�i,z� and Z0,u

�i,z� �Z̄0,u
�i,z�� are the partition functions of

the “up” branch restricted, respectively, to configurations in
which the site i is filled by a particle, or empty with the

upper site filled �empty�. Finally Z1,d
�i,z� and Z0,d

�i,z� �Z̄0,d
�i,z�� are the

partition functions of the “down” branch restricted, respec-
tively, to configurations in which the site i is filled by a
particle, or empty with the lower site empty �filled�.

The partition function of the branch ending in site i can be
recursively written in terms of the partition functions of the
neighbor sites. Summing over all the possible configurations
of the neighbor sites, we obtained that the partition function

FIG. 10. The dynamical nonlinear susceptibility, ��t� �normal-
ized by ��t0�, the value at t0=1 tap� as a function of t �t is in units
of tap�, for tap amplitudes T�=0.60, 0.50, 0.425, 0.41, 0.40, 0.385,
and 0.3825 mga0 /KB �from left to right�.

FIG. 11. Three kinds of branches exist here: �a� “side” branch:
the root site is connected to k−2 neighbors on its layer, one in the
upper and one in the lower layer; �b� “up” branch: the root site is
connected to k−1 neighbors on its layer and one in the upper layer;
�c� “down” branch: the root site is connected to k−1 neighbors on
its layer, one in the lower layer.
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of a “side” branch with root site i at height z is

Z0,s
�i,z� = ��

j=1

k−2

�Z0,s
�j,z� + Z1,s

�j,z���
��Z1,u

�i,z+1��Z1,d
�i,z−1� + e−K�Z̄0,d

�i,z−1� + Z0,d
�i,z−1���

+ �Z̄0,u
�i,z+1� + e−KZ0,u

�i,z+1�� � �Z1,d
�i,z−1� + Z̄0,d

�i,z−1� + Z0,d
�i,z−1��� ,

Z1,s
�i,z� = e���−mgz���

j=1

k−2

Z0,s
�j,z���Z̄0,d

�i,z−1� + e−KZ0,d
�i,z−1��

��Z̄0,u
�i,z+1� + Z0,u

�i,z+1�� . �A1�

In the same way, we can write the recursion relations for the
“up” branch,

Z0,u
�i,z� = ��

j=1

k−1

�Z0,s
�j,z� + Z1,s

�j,z���Z1,u
�i,z+1�,

Z̄0,u
�i,z� = ��

j=1

k−1

�Z0,s
�j,z� + Z1,s

�j,z���Z̄0,u
�i,z+1�,

Z1,u
�i,z� = e���−mgz���

j=1

k−1

Z0,s
�j,z���Z̄0,u

�i,z+1� + Z0,u
�i,z+1�� . �A2�

Finally, for the “down” branch, we have

Z0,d
�i,z� = ��

j=1

k−1

�Z0,s
�j,z� + Z1,s

�j,z����Z0,d
�i,z−1� + Z̄0,d

�i,z−1�� ,

Z̄0,d
�i,z� = ��

j=1

k−1

�Z0,s
�j,z� + Z1,s

�j,z���Z1,d
�i,z−1�,

Z1,d
�i,z� = e���−mgz���

j=1

k−1

Z0,s
�j,z��

��Z̄0,d
�i,z−1� + e−KZ0,d

�i,z−1�� . �A3�

In the following, we consider the limit K→� in order to take
into account the constraint on the mechanical stability. It is
convenient to introduce five local “cavity” fields on each
site: hs

�i,z�, hu
�i,z�, gu

�i,z�, hd
�i,z�, and gd

�i,z�, defined by the following

relations: e�hs
�i,z�

=Z1,s
�i,z� /Z0,s

�i,z�, e�hu
�i,z�

=Z1,u
�i,z� / Z̄0,u

�i,z�, e�gu
�i,z�

=Z0,u
�i,z� / Z̄0,u

�i,z�, e�hd
�i,z�

=Z1,d
�i,z� / Z̄0,d

�i,z�, and e�gd
�i,z�

=Z0,d
�i,z� / Z̄0,u

�i,z�. In
these new variables, the recursion relations are more easily
written,

e�hs
�i,z�

= e���−mgz���
j=1

k−2

�1 + e�hs
�j,z�

�−1��1 + e�gu
�i,z+1�

�

��1 + e�hd
�i,z−1�

+ e�gd
�i,z−1�

+ e�hd
�i,z−1�+�hu

�i,z+1�
�−1,

e�hu
�i,z�

= e���−mgz��1 + e�gu
�i,z+1�

��
j=1

k−1

�1 + e�hs
�j,z�

�−1,

e�gu
�i,z�

= e�hu
�i,z+1�

,

e�hd
�i,z�

= e���−mgz�e−�hd
�i,z−1��

j=1

k−1

�1 + e�hs
�j,z�

�−1,

e�gd
�i,z�

= �1 + e�gd
�i,z−1�

�e−�hd
�i,z−1�

. �A4�

Note that in the case k=1, the problem reduces to a simple
one-dimensional chain: In this case, the recursive method is
equivalent to the transfer-matrix method and gives the exact
solution.

From the iterative solution of Eqs. �A4�, it is possible to
compute the system free energy. Generalizing the procedure
followed in �11�, we calculate the free-energy density, F, in
the thermodynamic limit from the variation of the free en-
ergy going from a random graph with H layers and N sites on
each layer to one with H layers and N+2 sites on each layer.
In order to do that, we define the following intermediate
object: a random graph with H layers and N sites in each
plane such that 2�k+1� sites on each plane are connected
only to k neighbors instead of k+1. In particular, on each
layer two sites are not connected to sites on the higher layer
�“down” branches�, two sites are not connected to sites on
the lower layer �“up” branches�, and the other 2�k−1� are
connected only with k−2 sites in the plane instead of k−1
�“side” branches�. From this intermediate object, a random
graph with H layers and N+2 sites on each layer �all con-
nected to k+1 sites� can be obtained adding two new sites to
each plane and connecting each of the new sites with k−1
side branches on their respective planes, one up branch in the
upper layer and one down branch in the lower layer �see Fig.
12�. This operation is called “site addition.” A random graph
with H layers and N sites on each layer �all connected to k
+1 sites� is instead obtained from the intermediate object
adding for each layer two links between the up branches at
height z and the down branches at height z−1, and �k−1�

FIG. 12. Site addition: a new central site at height z is connected
to k−1 side branches �s� with the root sites in the same layer, to one
up �u� branch with the root site in the higher layer and to one down
�d� branch with the root site in the lower layer. Link addition �1�: a
link between a down branch with the root site at height z and an up
branch with the root site in the higher layer is added. Link addition
�2�: a link between two side branches with the root site in the same
layer is added.
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links between the sides branches on each layer �see Fig. 12�.
This operation, which allows us to saturate all the missing
links, is called “link addition.”

Therefore, the variation of the free energy when going
from NH to �N+2�H sites �i.e., a random graph with two
sites more on each layer� is related to the free-energy shifts
�see Fig. 12� for a site addition ��Fsite

�z� � and for two different
kinds of link addition ��Flink,1

�z� and �Flink,2
�z� �,

FN+2 − FN = 2�
z=1

H

�Fsite
�z� − �k − 1��

z=1

H

�Flink,2
�z� − 2�

z=1

H−1

�Flink,1
�z� ,

where FN+2−FN is obtained as �FN+2−F0�− �FN−F0�, and F0

is the free energy of the intermediate object described above.
We assume that in the thermodynamic limit, the free energy
is linear in N. The free-energy density is then

F = �
z=1

H

�Fsite
�z� −

�k − 1�
2 �

z=1

H

�Flink,2
�z� − �

z=1

H−1

�Flink,1
�z� . �A5�

In terms of the local fields, the free-energy shifts due to the
addition of a site i at height z read

e−��Fsite
�i,z�

= ��
j=1

k−1

�1 + e�hs
�i,z�

���1 + e�hd
�i,z−1�

+ e�gd
�i,z−1�

+ e�hd
�i,z−1�

e�hu
�i,z+1�

� + e���−mgz��1 + e�gu
�i,z+1�

� .

�A6�

The free-energy shift due to a link addition between a down
branch with the root site at height z and an up branch with
the root site at height z+1 is given by

e−��Flink,1
�i,z�z+1�

= 1 + e�gd
�i,z�

+ e�hu
�i,z+1�

+ e�hd
�i,z�

�1 + e�gu
�i,z+1�

� .

�A7�

Finally, the free-energy shift due to a link addition between
two side branches with root sites i and j at height z is

e−��Flink,2
�i�j,z�

= 1 + e�hs
�i,z�

+ e�hs
�j,z�

. �A8�

In order to compute the free energy of the system, we have to
compute the mean values of the free-energy shifts for all the
sites at a given height and for all the possible realization of
the lattice. In the following, these mean values will be com-
puted in three different cases: �1� A fluidlike homogeneous
phase; �2� a crystallinelike solution characterized by the
breakdown of the horizontal translational invariance; and �3�
a glassy phase by a one-step replica symmetry breaking.

The fluidlike solution is obtained by setting the local
fields on each layer the same for all sites of the layer
��h�i,z��= �h�z��∀ i�. In this case, Eqs. �A4� become 5H−1 al-
gebraic coupled equations and they are easily solved finding
the fixed points. This homogeneous �replica symmetric� so-
lution is characterized by horizontal translational invariance
and is found to be stable for high values of the configura-
tional temperature, Tconf, or for low values of the number of
grains per unit surface, Ns. In this case, the free energy is
easily computed from Eqs. �A6�, �A8�, and �A7�, since in
this case all the quantities are site-independent. From the free

energy F, we derive the density profile ��z�	
ni�z��,

��z� =
e���−mgz��1 + e�gu

�z+1�
�

e−��Fsite
�z� , �A9�

the number of particles per unity of surface, Ns	�z=1
H ��z�,

and the gravitational energy density E	�z=1
H mgz��z�. From

the relation F=E−TS−�Ns, we also calculate the entropy
per lattice site, S=−�F−��Ns+�E.

In the crystalline �replica symmetric� solution, the local
fields are different on different sites �breakdown of transla-
tional invariance�, but do not fluctuate from site to site. This
is achieved by introducing two sublattices, a and b, and dif-
ferent local fields on each lattice. The merging is done taking
into account the structure of the crystalline phase. In our
case, each site of the sublattice a �b� is connected with k
+1 sites of the sublattice b �a�. The crystal periodicity is thus
two lattice spacings. Schematically, Eqs. �A4� for each layer
become

�ha� = f��,�,�hb�� ,

�hb� = f��,�,�ha�� ,

where �ha� and �hb� are the sets of all local fields, respec-
tively, on the two sublattices. This is a system of 2�5H−1�
algebraic coupled equations. The free energy is computed
from the fixed points of these equations. For a given Ns, by
lowering Tconf, a phase transition from the fluid to the crystal
is found at Tm �see Fig. 3�.

The fluid phase still exists below Tm as a metastable phase
corresponding to a supercooled fluid when crystallization is
avoided. Nevertheless, the entropy per site predicted by the
fluid solution becomes negative when the temperature is
lowered. The fluid solution is definitely not appropriate to
describe this region, and therefore we have to look for an-
other kind of solution: A solution characterized by the pres-
ence of a large number of local minima of the free energy
appears at a temperature TD, and becomes stable at a tem-
perature TK�TD, higher than the temperature where the en-
tropy of the supercooled fluid becomes negative �see Fig.
13�.

To describe this situation where the local fields may fluc-
tuate, we have to introduce three probability distributions on
each layer—Pi,z

u �hu ,gu�, Pi,z
s �hs�, and Pi,z

d �hd ,gd�—defined as
the probability of finding the fields hu

�i,z� and gu
�i,z� �or, respec-

tively, hs
�i,z� or hd

�i,z� and gd
�i,z�� on site i at height z equal to hu

and gu �or, respectively, to hs or to hd and gd�. Since the
glassy phase is expected to be translational invariant, we
work in the factorized case in which the probability distribu-
tions at a given height are equal for all the sites of the layer
�Pi,z

u,s,d	Pz
u,s,d�.

The region at high packing fraction �or at low configura-
tional temperature� is characterized by the existence of many
metastable states, i.e., configurations which locally minimize
the free energy. The number of such states for a given value
of the free energy of the system is given by N�F�
�exp�N��F��, where the function ��F� is called complexity.
Within the one-step replica symmetry breaking ansatz of the
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cavity method �see Appendix B�, the recursion relations for
the fields are replaced by self-consistent integral equations
for the probability distribution of the fields. For the “up”
merging, the self-consistent integral equation reads

Pz
u�hu

z ,gu
z� = C1� �

j=1

k−1

�dhs
�j,z�Pz

s�hs
�j,z���

��dhu
�i,z+1�dgu

�i,z+1�Pz+1
u �hu

�i,z+1�,gu
�i,z+1���

���hu
z − hu

�i,z����gu
z − gu

�i,z��e−�m�Fup
�i,z�

,

�A10�

where C1 is a constant insuring the normalization of Pz
u, hu

�i,z�

and gu
�i,z� are the local fields defined by Eqs. �A4�, m

� �0,1� is the usual 1RSB parameter to be obtained by the
maximization of the free energy with respect to it, and �Fup

z

is the free-energy shift in the “up” merging process. This
quantity is computed by using the fact that the addition of a
site i at a certain height z �“site addition”� is the result of an
“up” merging process, which creates a new “up” branch with
root site i, plus a link addition between this branch and a
down branch at height z−1,

�Fsite
�i,z� = �Fup

�i,z� + �Flink,1
�i,z−1�z�. �A11�

From this equation, we obtain that

e−��Fup
�i,z�

=
Z̄0,u

�i,z�

Z̄0,u
�i,z+1��

j=1

k−1

Z0,s
�j,z�

. �A12�

From Eqs. �A1�–�A3�, the free-energy shift �Fup
�i,z� has a

simple expression in terms of the local fields.
In the same way, we can determine the self-consistency

equations for the other two kinds of merging,

Pz
s�hs

z� = C2� �
j=1

k−2

�dhs
�j,z�Pz

s�hs
�j,z���

��dhd
�i,z−1�dgd

�i,z−1�Pz−1
d �hd

�i,z−1�,gd
�i,z−1���

��dhu
�i,z+1�dgu

�i,z+1�Pz+1
u �hu

�i,z+1�,gu
�i,z+1���

���hs
z − hs

�i,z��e−�m�Fside
�i,z�

�A13�

and

Pz
d�hd

z ,gd
z� = C3� �

j=1

k−1

�dhs
�j,z�Pz

s�hs
�j,z���

��dhd
�i,z−1�dgd

�i,z−1�Pz−1
d �hd

�i,z−1�,gd
�i,z−1���

���hd
z − hd

�i,z����gd
z − gd

�i,z��e−�m�Fdown
�i,z�

.

�A14�

For the “side” and the “down” merging, one has that

�Fsite
�i,z� = �Fside

�i,z� + �Flink,2
�i�j,z� �A15�

and

�Fsite
�i,z� = �Fdown

�i,z� + �Flink,1
�i,z�z+1�. �A16�

This yields

e−��Fside
�i,z�

=
Z0,s

�i,z�

Z̄0,u
�i,z+1�Z̄0,d

�i,z−1��
j=1

k−2

Z0,s
�j,z�

�A17�

and

e−��Fdown
�i,z�

=
Z̄0,d

�i,z�

Z̄0,d
�i,z+1��

j=1

k−1

Z0,s
�j,z�

. �A18�

For any value of �, �, and m, we solve Eqs. �A10�, �A13�,
and �A14� iteratively, discretizing the probability distribu-
tions until the whole procedure converged.

From the probability distributions, we compute the free-
energy density of the system: according to Eq. �A5�, we have
to find the average values of the free-energy shifts due to link
and site additions. The free-energy shift due to site addition
is given by


e−�m�Fsite�z�� =� �
j=1

k−1

�dhs
�j,z�Pz

s�hs
�j,z���

� �dhd
�i,z−1�dgd

�i,z−1�Pz−1
d �hd

�i,z−1�,gd
�i,z−1���

� �dhu
�i,z+1�dgu

�i,z+1�Pz+1
u �hu

�i,z+1�,gu
�i,z+1���

� e−�m�Fsite�i,z�. �A19�

For the first kind of link addition, we have

FIG. 13. Entropy density, S, as a function of the configurational
temperature, Tconf �S is in units of KB and Tconf in units of
mga0 /KB�, in the liquid phase �RS solution� for Ns=0.6. A solution
characterized by the presence of a large number of local minima of
the free energy appears at a temperature TD, and becomes stable at
a temperature TK.
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e−�m�Flink,1
�z�

� =� �dhd
�i,z−1�dgd

�i,z−1�Pz−1
d �hd

�i,z−1�,gd
�i,z−1���

� �dhu
�i,z+1�dgu

�i,z+1�Pz+1
u �hu

�i,z+1�,gu
�i,z+1���

� e−�m�Flink,1
�i,z−1�z�

. �A20�

Finally, for the second kind of link addition, we find


e−�m�Flink,2
�z�

� =� �
j=1

2

�dhs
�j,z�Pz

s�hs
�j,z���e−�m�Flink,2

�i�j,z�
. �A21�

In the previous relations, �Fsite�i ,z�, �Flink,1
�i,z−1�z�, and �Flink,2

�i�j,z�

are functions of the local fields according to Eqs. �A6�–�A8�.
The total free-energy density of the system is, according

to Eq. �A5�,

F�m� = −
1

�m��
z=1

H

log e−�m�Fsite
�z�

− �
z=1

H
�k − 1�

2
log e−�m�Flink,2

�z�

− �
z=1

H−1

log e−�m�Flink,1
�z� � . �A22�

The parameter m is fixed by the maximization of the free
energy with respect to it. The justification for that is in the
replica method, since m turns out to be the breakpoint in
Parisi’s order parameter function at the one-step RSB level.
For a spin glass, it has been rigorously proved that in the
limit k→�, F�m� is a lower bound to the correct free energy,
so it is natural to find the preferred value of m by the maxi-
mization of F�m�.

From the knowledge of F�m�, it is indeed possible to
compute the complexity ��F� by Legendre transforming the
function F�m� itself �20�,

��F� = �m2�F�m�
�m

. �A23�

From this equation, we see that the maximization of F�m�
with respect to m corresponds exactly to the condition that
the complexity vanishes. This relation also allows us to
evaluate TK.

First of all, for any given values of Tconf and �, we solve
numerically Eqs. �A10�, �A13�, and �A14� using an iterative
procedure, for different values of the parameter m. This al-
lows us to determine the field probability distributions. At
this point, we can compute the function F�m� via the relation
expressed in Eq. �A22�. For high configurational temperature
�or low grain surface density�, the iterative algorithm con-
verges to the liquid solution, i.e., the field distribution func-
tions turn out to be � functions peaked around the fixed point
of the liquid solution. As Tconf is decreased �or Ns is in-
creased�, a first nontrivial solution of the equations discon-
tinuously appears at TD for m=1. At this point, many states
appear. However, the maximum of F�m� with respect to m is
found at m�1. Thus, such states are only metastable, the
equilibrium state of the system being still given by the liquid.
TD is identified as a dynamical transition because at this
point the equilibrium dynamics should display an ergodic-
nonergodic transition due to the emergence of the metastable

states. In this case, the complexity is found to be positive.
The static transition appears at lower temperature, TK,

where the complexity vanishes �see Fig. 14�. In order to ob-
tain TK, we can directly look for the temperature where
�mF�m=1�=0. For lower values of the configurational tem-
perature �Tconf �TK�, the maximum of F�m� with respect to
m is found at 0�m�1. The location of this maximum
equals m=1 at Tconf =TK and tends to zero as Tconf →0. This
is the same behavior found in p-spin models.

APPENDIX B: SELF-CONSISTENCY EQUATIONS
IN THE CAVITY METHOD

In this appendix, we show how to obtain the self-
consistency integral Eqs. �A10�, �A13�, and �A14� using the
cavity method in the one-step RSB ansatz �11,12�. The re-
gion at high packing fraction �or at low configurational tem-
perature� is characterized by the existence of many pure
states. Let N�F� be the number of pure states for a given
value of the free-energy density of the system. The function
N��F�=log N�F� is called complexity. We assume that
within one pure state �, the local fields hu,�

�i,z�, gu,�
�i,z�, hs,�

�i,z�, hd,�
�i,z�,

and gd,�
�i,z� on different cavity sites are uncorrelated. Therefore,

Eqs. �A4� continue to hold in any given pure state. In this
case, we have to make a statistical description of the solu-
tions of Eqs. �A4� in the different pure states, taking into
account the number of pure states for a given value of the
free energy.

Let us consider, for example, the “up” merging of k cavity
sites in a site i at height z. As said before, in each pure state
� the local fields in the k cavity sites are not correlated.
Nevertheless, in each pure state � the local fields,
�hu,�

�i,z� ,gu,�
�i,z��, and the free-energy shift, �Fu,�

�i,z�, due to the
merging are correlated, since they are both functions of the
local fields in the neighbor sites in the state �, according to
Eqs. �A4� and �A11�. Let us define Sz�hu

z ,gu
z ,�Fu

z� as the
probability distribution of finding the fields �hu,�

�i,z� ,gu,�
�i,z�� and

the free-energy shift �Fu
z after an up merging at height z.

Because of the recursion relations of Eqs. �A4� and �A11�,
this distribution probability has to verify the following itera-
tion relation:

FIG. 14. Complexity, �, as a function of the configurational
temperature, Tconf �� is in units of KB and Tconf in units of
mga0 /KB�, in the one-step RSB solution for Ns=0.6. At TK, the
complexity becomes zero.
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Sz�hu
z ,gu

z ,�Fu
z� =� �

j=1

k−1

�dhs
�j,z�Pz

s�hs
�j,z����dhu

�i,z+1�dgu
�i,z+1�

�Pz+1
u �hu

�i,z+1�,gu
�i,z+1�����hu

z − hu
�i,z��

���gu
z − gu

�i,z�����Fu
z − �Fu

�i,z�� . �B1�

In order to determine the probability distribution for the local
fields self-consistently, we have to make the integration over
all possible free-energy shifts,

Pz
u�hu

z ,gu
z� =� d��Fu

z�Sz�hu
z ,gu

z ,�Fu
z�N�F − �F�

=� d��Fu
z�Sz�hu

z ,gu
z ,�Fu

z�eN���F−�Fu
z �/N�.

Since we are interested only in the local minima with the
lowest free energies, we expand the exponent to the first
order in �Fu

z ,

Pz
u�hu

z ,gu
z� = C1� d��Fu

z�Sz�hu
z ,gu

z ,�Fu
z�exp�− �m�Fu

z� ,

�B2�

where the parameter m� �0,1� is

m =
1

�

��

�F
, �B3�

and C1 is a normalization constant. Actually, the first-order
expansion means that the density of pure states for a given
value of the free energy is N
exp�m�F−Fref��, where Fref is
a reference free energy whose value is completely irrelevant.
This form of the density of states is the same found in the
one-step RSB formulation.

By integrating over �Fu
z , the � function selects only the

right value of the free-energy shift given in Eq. �A12�. We
thus have

Pz
u�hu

z ,gu
z� = C1� �

j=1

k−1

�dhs
�j,z�Pz

s�hs
�j,z���

��dhu
�i,z+1�dgu

�i,z+1�Pz+1
u �hu

�i,z+1�,gu
�i,z+1���

���hu
z − hu

�i,z����gu
z − gu

�i,z��e−�m�Fu
z
. �B4�

We have thus obtained the self-consistency Eq. �A10�. In the
same way, it is possible to obtain the equations for the “side”
and the “down” merging.
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